lal	I 1C	ket N	lumb	er:							
				47	 -					Code No.	: 17436 S

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (E.C.E.) VII-Semester Supplementary Examinations, July-2022

Microwave Engineering

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	What are microwaves? List out the typical applications of microwaves.	2	1	1	1
2.	Sketch the field distribution inside a parallel plane guide for dominant mode.	2	2	1	1
3.	Find the cut-off frequency of an air filled rectangular cavity resonator when $a = 6 \text{cm}$, $b = 2 \text{ cm}$ and $d = 10 \text{ cm}$ for TE_{101} mode?	2	2	2	2
4.	Differentiate between dominant and degenerate modes in waveguides.	2	2	1	2
5.	What is scattering matrix and mention its properties?	2	2	3	1
6.	How the circulator can be used as an isolator? Outline their functionality.	2	2	3	1
7.	List out the limitations of conventional tubes at microwave frequencies.	2	1	4	1
8.	Compute the velocity of the electron when the applied beam voltage V_0 =300 volts of a Reflex Klystron Oscillator.	2	3	4	2
9.	Outline the structure of microstrip line and mention the importance of effective dielectric constant.	2	2	3	1
10.	Find the operating frequency of an IMPATT diode with carrier drift velocity of $v_d = 2X10^7 cm/s$ and drift space charge length of $L = 6\mu m$.	2	3	5	2
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Explain attenuation with planes of finite conductivity for TE, TM wave propagating through a parallel plane waveguide and sketch their variation as a function of frequency.	4	4	1	3
b)	Consider a parallel plane wave guide with plate separation of 20cm with the TE ₁ mode excited at 1GHz. Find the propagation constant, the cut off frequency and wavelength in the guide.	4	3	1	2
12. a)	Starting from the Maxwell's equations, Illustrate the TE field equations propagating inside the rectangular waveguide.	4	1	1	1
b)	A Rectangular waveguide has a cross section of 1.5cm X 0.8cm, $\sigma=0, \mu=\mu 0$, and $\varepsilon=4\in_0$. The electric field component is along the direction of propagation and the magnetic field component is given as $H_x=2\sin(\frac{\pi x}{a})\cos(\frac{3\pi y}{b})\sin(\pi X 10^{11t}-\beta z)$ A/m, Determine a. The mode of operation b. Cut off frequency c. Phase Constant d. Wave Impedance	4	3	1	2

Code No.: 17436 S

13. a)	Explain the construction and operation of E-Plane Tee? Formulate the Scattering matrix for E-Plane Tee.	4	3	3	1
b)	A 10mW signal is fed into one of collinear port of a lossless Magic - Tee junction. Calculate the power delivered through each port when other ports are terminated with matched load.	4	4	3	3
14. a)	Derive the expression for bunching distance of a two cavity klystron Amplifier.	4	3	4	1
b)	Explain the operation of Reflex klystron tube with the help of Applegate diagram.	4	2	4	1
15. a)	Explain the construction and working principle of a Gunn diode using two valley model?	4	2	5	1
b)	Explain the geometrical structure and operation of IMPATT diode.	4	1	5	1
16. a)	Explain the significance of TEM mode in parallel plane waveguides using corresponding field equations?	4	2	1	1
b)	Design an air filled rectangular wave guide at the signal frequency 1 GHz for	4	3	1	3
- Palitime -	a. TE ₁₀ mode b. TE ₂₀ mode				
17.	Answer any two of the following:				
a)	A signal of 25W is fed at one port of a symmetric directional coupler with directivity D= 40 dB and coupling factor C=13 dB. Find the power outputs at	4	4	3	2
	i. Coupled port ii. Isolated port iii. Output port				
b)	A 400kW cylindrical magnetron is operating at X-Band has the following set of parameters	4	3	4	2
4	anode voltage V _{dc} =32KV				
A. see	beam current I _{dc} =84A				
	radius of cathode (a) = $6cm$				
	radius of anode (b)= 12 cm				
2	magnetic flux density (B)= 0.01 wb/m ²				
	Calculate Calculate				
	(a) Cyclotron angular frequency				
	(b) Cut off magnetic flux density for a fixed V _{dc}				
	(c) The cut off voltage for a fixed B ₀				
c)	Explain different modes of operation of a GUNN diode with neat sketches.	4	1	5	1

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	30%
iii)	Blooms Taxonomy Level – 3 & 4	50%
